

WEBINAR

Top 7 Metrics to Manage Your Calibration Program

Jay Langlois, L3Harris Curtis Keller, SIMCO Electronics

Welcome & Housekeeping

Welcome

45-minute webinar (including Q&A)

Recording and slide deck will be emailed to all attendees

Chat box at bottom of screen for capturing questions

Speakers

Curtis Keller

Technical Director & Asia

curtis.keller@simco.com

- 37 years of calibration and quality leadership experience primarily in lives-at-stake industries including Biomedical, Aerospace and Defense.
- Joined SIMCO in 2007. Currently serves as both Technical Operations Director for all SIMCO and Area Director for SIMCO's Asia operations. Previously with Intermountain Metrology Services, Stabro Labs and the U.S. Marine Corps

simco-

Introduction

Today we'll cover:

Top 7 calibration metrics

Tailoring metrics to your needs

Leveraging metrics for continuous improvement

Introduction

We're experts in the science of measurement.

Yet more than 50% of calibration pros struggle with defining and tracking the metrics that matter to their program.

Speakers

Jay Langlois

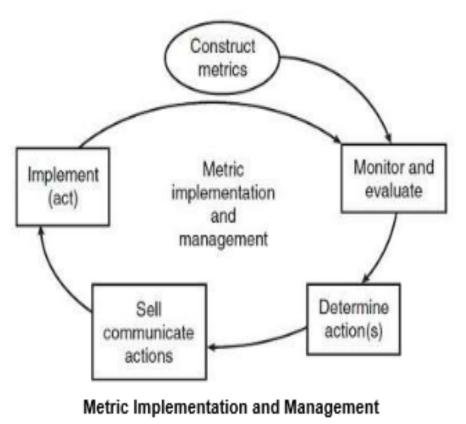
Manager of Calibration & Asset Mgmt

L3Harris

jay.w.langlois@L3Harris.com

- 26 years of quality, calibration, and manufacturing leadership experience within Aerospace, Automotive, Semiconductor and Medical industries.
- Joined L3 Communication (now L3Harris) in 2010. Manages the Continuous Improvement and Quality Records departments and leads the corporate Calibration Interdivisional Services Team.
- Certified Lean Six Sigma Green Belt, ASQ CCT and NPMA CPPS

simco-


Metric Management

Start with purpose

Choose metrics that fit purpose

Know why you're measuring

Know how data will be used

https://asq.org > quality-resources > metrics

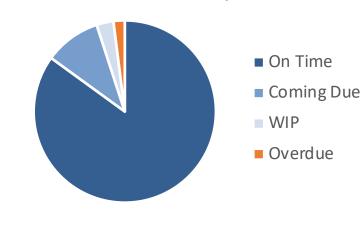
Top-7 Metrics to Measure

- 1. On Time Compliance
- 2. Turn-Around Time
- **3.** Service Location
- 4. Out of Tolerances (OOT)
- 5. Work In Progress (WIP) Aging
- 6. Errors
- 7. Program Cost

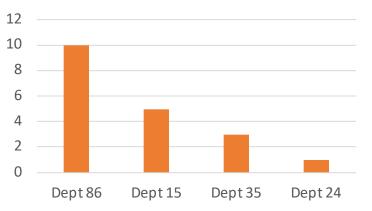
simco-

On Time Compliance

instruments not overdue for calibration / # total instruments



Important because overdue instruments are an audit risk and potential product risk


On Time Compliance

% of calibrated instruments that are not overdue for calibration

On-Time Compliance

Overdue by Department

simco-

Turnaround Time

Instrument downtime due to calibration service – many ways to measure

Important because instrument downtime affects production

Turnaround Time

Instrument downtime due to calibration service Preferred ways to measure:

- % of calibrations that met turnaround target
- Average turnaround time (in business days)
- Track by service location

Service Location

% of calibrations performed at each service location (onsite, local lab, remote lab, OEM)

Important because service location has huge impact on instrument downtime

Service Location

% of calibrations performed at each service location Service location has biggest impact on downtime

Bus. Days	Location		
1	Onsite		
2-5	Local Lab		Example
10	Remote Lab		
30	OEM / Other 3 rd Party		

Track changes over time; strive to maximize local + onsite

Out Of Tolerances (OOT)

of OOT events / # of calibrations performed

Important because each OOT event requires an impact assessment

Out Of Tolerances

% of calibrations that were found Out Of Tolerance Track over time and drill down as needed:

- By instrument class
- By make & model
- By department

Work In Process (WIP) Aging

of days that instruments have been out for service

Important to be proactive and accountable in addressing problem calibrations

WIP Aging

of days thatinstruments havebeen out for service

 Monitor WIP for unexpected delays

 Understand and address reasons for aging WIP

Errors

of errors / # of calibrations performed

Important to drive continuous improvement in calibration quality

Errors

of errors / # of
calibrations
performed

- Track by error type
- Track by source (i.e., vendor, technician)
- Leverage data to drive CAPAs

Program Cost

All calibration-related expenses

Important to be accountable and to eliminate waste

Program Cost

All calibrationrelated expenses

- Compare spending vs. budget and forecast
- Measure success of lean projects
- Be proactive in addressing overages

Summary – 7 Top Metrics Categorized

QUALITY	On Time ComplianceOut Of TolerancesErrors
PERFORMANCE	Turnaround TimeService LocationWIP Aging
COST	Program Cost

Other Metrics

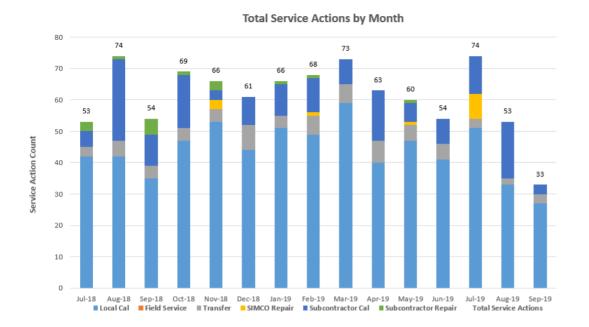
Customer Satisfaction	Internal or external customer satisfaction survey results
------------------------------	---

Calibration Throughput # calibrations completed / lab (or technician) / time

Level Loading Calibration workload distribution over time

Many Others Depending on customer needs

Interpreting the Data


Use Effective Visualization:

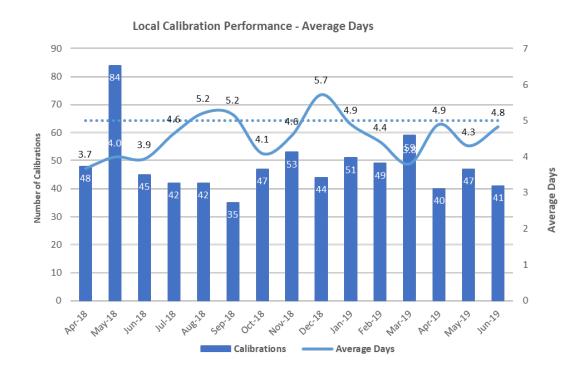
- Include overlapping periods
- Include relevant supporting / contextual data
- For turnaround, consider both % meeting goal <u>and</u> average days
- Use Stoplights

simco-

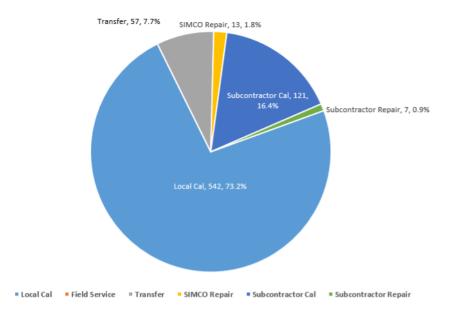
Example Data Visualizations

Stacked Column Charts

100% Stacked Column Charts



simco-


Example Data Visualizations

Dual-Axis Charts

Service Action Distribution - Trailing 12-months

Lead Through Metrics

Prioritize your metrics	What are the top metrics for your organization?
Share Ownership	A world class program takes more than a good cal lab
Be Transparent	Good or bad, report the data and own the results
Automate	Automate to measure, monitor, benchmark, improve

Resources

Visit <u>www.simco.com/top-calibration-metrics-guide</u> for more information on improving your calibration program

curtis.keller@simco.com

jay.w.langlois@L3Harris.com

Thank you for attending!

